a) Organización molecular de la membrana


Cada célula se encuentra rodeada por una membrana plasmática que la rodea, le da forma, es especifica de la funcion de esta y la relaciona con el medio extracelular.
Actúa como una barrera de permeabilidad que permite a la célula mantener una composición citoplasmática distinta del medio extracelular.
Contiene enzimas, receptores y antígenos que desempeñan un papel central en la interaccion de la celulas con otras celulas, así como con las hormonas y otros agentes reguladores presentes en él liquido extracelular.
Estructura de la membrana Los constituyentes más abundantes son las proteínas y fosfolípidos. La molécula fofolípidos presentan una cabeza polar y dos cadenas hidrofóbicas, constituidas por ácidos grasos.
Su presencia fue confirmada con él ME dé transmicion, así la membrana plasmática en cortes transversales apareció como una triple lamina dos elctrodensas y una electrolucida, Robertson designo a esta triple lamina unidad de membrana. Como químicamente evidenciaba el predominio de lípidos y proteínas, se dieron a la búsqueda de un modelo teórico que explicara esta estructura.
Singer y Nicholson propusieron el modelo del mosaico fluido, este es molecular y teórico y se basa en datos de la estructura, la química y la biofísica pero no puede ser visualizado por ME actuales. Propusieron el ensamble de las moléculas de lípidos y proteínas, la hemicapa externa seria totalmente fosfolipídica y la hemicapa interna estaría formada por fosfolípidos y moléculas de colesterol intercaladas, esta es asimétrica por que los fosfolípidos de la hemicapa externa difieren de la interna.
Proteínas de la membrana
  • Proteínas integrales intrínsecas
  • = incrustadas total o parcialmente en el espesor de la bicapa. Se mueven lateralmente en la membrana.Funciones:
    Funcion estructural Funcion de bomba Portadoras Conductoras Enzimáticas Productoras de anticuerpos
  • Proteínas periféricas o extrínsecas
  • = adosadas por el lado externo y/o interno de la bicapa. Son las más móviles.
Funciones:
 * Uniones transitorias a ciertas sustancias: recibir información, ligar sustancias que han de penetrar en la membrana, participar en reacciones bioquímicas.
* Uniones estables con otras membranas o estructuras intercelulares
* Uniones facultativas, mas o menos estables para fijar elementos que ingresan a la célula.
Entre las proteínas de la membrana se incluyen enzimas, proteínas transportadoras y receptores para hormonas y neurotransmisores.
Glucoproteínas
Composición lipídica Los lípidos forman una barrera continua, mantienen la individualidad celular.
: están situadas casi exclusivamente en la superficie de la membrana. La carga negativa de la superficie de la célula es atribuible al ácido siálico, con carga negativa de glucolípidos y glucoproteínas.

  • Fosfolípidos principales: los más abundantes suelen ser los que contienen colinas, las lecitinas y las esfingomielinas, aminofosfolipidos, fosfatidilserina y fosfatidiletanolamina. Otros, fosfatadilglicerol, fosfatatidilinositol y la cardiolipina.
  • Colesterol: es cuantitativamente importante
  • Glucolipidos: se encuentran principalmente en las membranas plasmáticas, en las que sus porciones glucídicas sobresalen de la superficie externa de la membrana. (cerebrosidos y gangliosidos).
Membrana celular


Esquema de la organización de una membrana plasmática. Es una bicapa estructurada por los lípidos. Determinados lípidos se asocian entre sí para formar agrupaciones más densas denominadas balsas de lípidos, en la cuales se sitúan ciertas proteínas por afinidad eléctrica. El colesterol se localiza entre las cadenas de ácidos grasos, cerca de la zona hidrofílica ("cabezas" de los lípidos). Las proteínas integrales comunican el exterior (arriba) con el interior (abajo) de la célula. Los glúcidos se localizan en la parte extracelular formando el glucocálix. En este esquema no se muestran las interacciones con la matriz extracelular ni con las moléculas del citoesqueleto. (Modificado de Edidin, 2003)


Ver video
http://www.youtube.com/watch?v=SXEDZzS3vEk&NR=1



                                          i.    Modelo de membrana


El modelo de mosaico fluido es, en biología, un modelo de la estructura de la membrana plasmática propuesto en 1972 por S. J. Singer y Garth Nicolson gracias a los avances en microscopía electrónica, el estudio de interacciones hidrófilas, al estudio de enlaces no covalentes como puentes de hidrógeno y el desarrollo de técnicas como la criofractura y el contraste negativo.
Mosaico fluido
En la membrana plasmática, los lípidos se disponen formando una bicapa. Las proteínas se intercalan en esa bicapa de lípidos dependiendo de las interacciones con las regiones de la zona lipídica. Existen dos tipos de proteínas según su disposición en la bicapa:
  •  Proteínas integrales (o intrínsecas). Embebidas en la bicapa lipídica, atraviesan la membrana una o varias veces, asomando por una o las dos caras (proteínas transmembrana); o bien mediante enlaces covalentes con un lípido o a un glúcido de la membrana. El aislamiento de ella requiere la ruptura de la bicapa.
  • Glucoproteínas. Se encuentran atravesando toda la capa de la membrana celular, su nombre es debido a que contiene glúcidos.
  • Proteínas periféricas (o extrínsecas). A un lado u otro de la bicapa lipídica, pueden estar unidas débilmente por enlaces no covalentes. Fácilmente separables de la bicapa mediante soluciones salinas, sin provocar su ruptura. Aparecen en la membrana interna y carecen de proteínas transmembranas.
Este modelo fue desarrollado para demostrar la asimetría entre ambas capas, lo que explicaría porque no entran los mismos nutrientes que los que salen.




El modelo de Singer y Nicolson que fue propuesto en 1972, y la llamaron "mosaico fluido". Este modelo plantea que la membrana está formado por disoluciones bidimensionales de proteínas y lípidos ordenados en una bicapa ininterrumpida, cuyas cabezas polares están en contacto con el medio acuoso.
                                         
                                          ii.    Lípidos y fluidez de membrana


La estructura de la membrana celular está determinada por las características de sus componentes, fundamentalmente por los lípidos. Los otros componentes importantes de la membrana celular son las proteínas, principales actores en las funciones celulares asociadas a la membrana, y los glúcidos. Sin embargo, la diversidad y su organización espacial hacen a los lípidos esenciales. Así, ellos definen las propiedades físicas de las membranas. La longitud y el grado de saturación de sus ácidos grasos regulan la fluidez y el grosor de la membrana. Las cargas asociadas a sus partes hidrofílicas contribuyen a crear un gradiente eléctrico entre la cara externa y la interna, y por tanto a modular el potencial eléctrico de la membrana. Sus interacciones con las proteínas asociadas a la membrana modulan la actividad de éstas. Pero además pueden actuar como segundos mensajeros que abandonan la membrana, viajan a compartimentos intracelulares y desencadenan respuestas celulares. Se ha postulado que las interacciones moleculares entre ciertos lípidos producen la segregación de dominios espaciales y funcionales en áreas restringidas de la membrana que afectan también a la localización de las proteínas y a sus funciones. Son las denominadas balsas de lípidos o "lipid rafts".
Lípidos




           Principales lípidos presentes en las membranas celulares
Los lípidos constituyen aproximadamente el 50 % del peso de las membranas, con unos 5 millones de moléculas por µm2. Las membranas celulares de una célula eucariota contienen más de mil tipos de lípidos que aparecen en distinta proporción según el tipo de membrana que estemos considerando. Se estima que aproximadamente el 5 % de los genes de una célula están dedicados a producir sus lípidos. Vamos a describir los más abundantes.
Fosfoglicéridos o glicerofosfolípidos
Son los lípidos más abundantes de las membranas celulares y estructuralmente constan de tres partes: dos cadenas de ácidos grasos, glicerol y un ácido fosfórico. Las cadenas de ácidos grasos contienen de 13 a 19 átomos de carbono de longitud. La mayoría de los enlaces entre estos carbonos son simples y por tanto se dice que son enlaces saturados. Más de la mitad de los ácidos grasos tienen al menos un doble enlace entre dos átomos de carbono, hablamos entonces de ácidos grasos insaturados. Estos dobles enlaces hacen que la cadena de ácido graso se doble y, aunque restrinja las posibilidades de movimiento de la cadena, un aumento de la proporción de estos dobles enlaces aumenta la fluidez de la membrana puesto que provoca más separación entre moléculas. Los ácidos grasos constituyen la parte hidrofóbica (fobia por el agua) de los glicerofosfolípidos y son los que constituyen la parte interna de las membranas. El glicerol hace de puente entre los ácidos grasos y la parte hidrofílica (apetencia por el agua). Este componente hidrofílico puede ser la etonalamina, colina, serina, glicerol, inositol o el inositol 4,5-bifosfato. Estos componentes son los que dan nombre a los distintos tipos de glicerofosfolípidos. El tipo fosfatidiletanolamina representa más del 50 % de los fosfolípidos en las membranas eucariotas.
Esfingolípidos
Deben su nombre a que poseen una molécula de esfingosina, un alcohol nitrogenado con un cadena carbonada larga, a la cual se le une una cadena de ácido graso, formando la estructura básica denominada ceramida. Por tanto queda una estructura similar a la de los glicerofosfolípidos, dos cadenas hidrofóbicas unidas a una estructura hidrofílica. Los esfingolípidos constituyen la mayoría de los denominados glucolípidos de las membranas, es decir, lípidos que poseen uno o más azúcares unidos formando parte de su zona hidrofílica. Otro tipo de esfingolípidos son las esfingomielinas que poseen una etanolamina o una colina fosforiladas en sus zonas hidrofílicas. Los esfingolípidos son más abundantes en las mebranas plasmáticas que en las de los orgánulos, y se se les propone como lo principales responsables, junto con el colesterol, de la segregación de la membrana en dominios moleculares (balsas de lípidos).
Esteroles
El colesterol es el esterol más importante de las células animales y el tercer tipo de lípido más abundante en la membrana plasmática, mientras que aparece en pequeñas proporciones en las membranas de los orgánulos. El colesterol no aparece en las membranas de las plantas, en algunas células eucariotas, ni en las bacterias, pero estas células tienen otro tipo de esteroles. El colesterol se localiza entre las cadenas de ácidos grasos de los otros lípidos. Es importante para la estructura de la membrana puesto que junto con los esfingolípidos parece contribuir a formar heterogeneidades en la distribución molecular y también participa en ciertos procesos metabólicos vitales como la síntesis de hormonas esteroideas o de sales biliares, entre otras.

Fluidez
Movimientos

Movimientos que pueden sufrir los lípidos en las membranas gracias a su fluidez. Los movimientos flip-flop son muy raros para los lípidos y no se han documentado para las proteínas.
Es la capacidad de una molécula que forma parte de una membrana para desplazarse por ella. Las membranas son fluidas, prácticamente son láminas de grasa, donde las moléculas se encuentran en un estado de líquido viscoso. Esto implica que, en teoría, las moléculas podrían difundir y desplazarse por ella sin restricciones. Consideremos un glicerofosfolípido que está situado en la membrana plasmática en su monocapa externa. Tendría dos posibilidades de movimiento: uno lateral donde se desplazaría entre las moléculas contiguas, y otro en el que saltaría a la monocapa interna, movimiento denominado "flip-flop". Los dos tipos de movimientos se han demostrado experimentalmente en membranas artificiales pero uno es más frecuente que el otro. Una molécula lipídica puede recorrer 30 micras en unos 20 segundos por difusión pasiva lateral, es decir, podría dar la vuelta a una célula de tamaño medio en aproximadamente un minuto. Sin embargo, los saltos entre monocapas son muy infrecuentes, se estima que la posibilidad de que le ocurra a un lípido es de una vez al mes debido a que las cabezas polares de los lípidos se encuentran con la barrera de las cadenas de ácidos grasos. El colesterol posee, sin embargo, la capacidad de hacer movimientos "flip-flop" con relativa facilidad.
La fluidez de la membrana puede variar con la composición química de sus componentes. Así, generalmente, la menor longitud o la mayor cantidad de enlaces insaturados de las cadenas de ácidos grasos, así como el aumento de la concentración de colesterol, hacen que las membranas sean más fluidas. Por tanto, las células pueden alterar la fluidez de sus membrana modificando la composición química de éstas. Por ejemplo, algunas bacterias son capaces de aumentar la concentración de ácidos grasos insaturados (dobles enlaces) a temperaturas bajas, mientras que cuando suben los cambian por ácidos grasos saturados. La bajada de la temperatura disminuye la fluidez de la membrana.
Movimientos

Los movimientos de las moléculas pueden estar restringidos por las interacciones directas con la matriz extracelular, con el citoesqueleto, aunque también se pueden limitar los movimientos por la inclusión en las balsas de lípidos o por la disposición del citoesqueleto (imagen de la derecha).
Podríamos pensar que las proteínas integrales de membrana también tienen la posibilidad de una libre difusión lateral. Se ha comprobado que las proteínas tienen numerosas restricciones a la movilidad, principalmente por culpa de las interacciones de sus dominios intra y extracelulares con moléculas del citoesqueleto y de la matriz extracelular, respectivamente. Estas interacciones anclan por tiempos más o menos prolongados las proteínas de membrana a lugares concretos de la superficie celular. Las células tienen otros mecanismos para confinar proteínas a determinados dominios celulares. Por ejemplo, en las células epiteliales del digestivo ciertos transportadores y enzimas están localizados sólo en la zona apical y otros en la basal gracias al cierre a modo de cinturón que realizan las uniones estrechas, como vimos en el capítulo dedicado a la matriz extracelular. Tal asimetría es esencial para el funcionamiento de la célula epitelial.
Recientemente se ha postulado una restricción adicional al movimiento de las moléculas en las membranas de las células: las interacciones y asociaciones moleculares entre las propias moléculas de las membranas. Los esfingolípidos y el colesterol se pueden asociar entre sí espontáneamente haciendo que su movilidad disminuya y por tanto se conviertan en una región membranosa más densa que el resto, como si de una balsa en un mar se tratara. Se cree que estas asociaciones, denominadas balsas de lípidos ("lipid rafts"), son muy abundantes y dinámicas y hacen que las membranas celulares sean en realizad un mosaico de dominios más densos que viajan entre los glicerofosfolípidos, más fluidos. Hay experimentos que apoyan la idea de que ciertas proteínas tendrían mayor apetencia por estas balsas y por tanto viajarían en el interior de ellas. Este confinamiento de proteínas en dominios celulares es importante puesto que permitiría agrupar o segregar conjuntos de proteínas que favorecerían o no el inicio de cascadas de señalización intracelulares. Además, se postula que la alta concentración de ciertos tipos de lípidos en dichas balsas crea un ambiente químico propicio para determinadas reacciones químicas o interacciones moleculares. Por ejemplo, se cree que la infección de los linfocitos por parte del virus del SIDA necesita la existencia de dichas balsas de lípidos. En cualquier caso tales dominios de esfingolípidos y colesterol sólo se han postulado para la monocapa externa de la membrana plasmática, aunque también se propone su existencia en las membranas de los orgánulos celulares donde algunas funciones del propio orgánulo estarían segregadas en distintos dominios de sus membranas.
 Referencias:
Janmey PA, Kinnunen PKJ. Byophisical properties of lipids and dynamic membranes. 2006. Trends in cell biology. 16:538-546.
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where are they a how they behave. 2008. Nature reviews in molecular cell biology. 9:112-124.


                                          iii.    Proteínas de membrana

 
Las proteínas son las responsables de muchas de las funciones que tienen su base en las membranas celulares. Hay dos grandes grupos de proteínas relacionadas con las membranas: las integrales y las periféricas.
Proteínas integrales o transmembrana
Proteínas transmembrana
En este esquema se muestran los principales tipos de proteínas transmembrana. Las hay con un solo cruce como la glicoforina o con varios como algunos receptores. En ambos casos la secuencia o secuencias de aminoácidos localizadas entre las cadenas de ácidos grasos adoptan una conformación en alfa hélice. La aquaporina, un canal que cruza numerosas veces la membrana, posee secuencias de aminoácidos de la zona hidrofóbica que se disponen en hebras beta. (Modificado de Pollard et al., 2007)
Las proteínas integrales son aquellas que tienen tres dominios en sus secuencias de aminoácidos: uno extracelular, uno intracelular y otro integrado en la membrana. Poseen secuencias de aminoácidos con radicales hidrofóbicos que se sitúan entre las cadenas de ácidos grasos de los lípidos de la membrana, mientras que los dominios intra y extracelular poseen secuencias de aminoácidos con radicales hidrofílicos. Estas proteínas son mayoritariamente producidas en el retículo endoplasmático y repartidas por otras membranas de la célula principalmente mediante el tráfico vesicular, como veremos en capítulos posteriores.
Existen proteínas transmembrana cuya cadena de aminoácidos cruza una sola vez la membrana mientras que otras pueden hacerlo hasta 7 veces. Muchas proteínas transmembrana realizan su función cuando se asocian con otros polipéptidos también integrales para formar estructuras oligoméricas (más de un elemento). Las funciones son muy variadas, pero destacan la adhesión llevadas a cabo por las integrinas, cadherinas, selectinas y otras, formación de bombas transportadoras de iones, transportadores de moléculas como la glucosa y canales iónicos que generan ATP como la ATPasa de las mitocondrias y los cloroplastos, otras pueden afectar al potencial de membranas como los canales calcio, sodio o potasio. Algunas son receptores de señales como los que reconocen los factores se crecimiento, neurotransmisores, hormonas y otros. Su organización en dominios extracelular e intracelular permite una comunicación entre ambos de la membrana, lo cual hace que una información extracelular, por ejemplo una hormona reconocida por el dominio extracelular, provoque un cambio conformacional en el dominio intracelular y esto desencadene una cascada de señales intracelulares que alteren la fisiología celular, incluso la expresión génica.
Proteínas periféricas
Proteínas periféricasSe esquematizan las principales formas de proteínas periféricas: aquellas asociadas a la superficie de la membrana y aquellas que se encuentran parcialmente integradas. De izquierda a derecha: proteínas que tienen una parte de su secuencia de aminoácidos inserta en una de las monocapas de la membrana; proteínas que interactúan con los dominios extramembrana de proteínas integrales; proteínas que interactúan eléctricamente con las cabezas de los lípidos; proteínas que están unidas covalentemente a azúcares de los glucolípidos y, por último, proteínas que tienen ácidos grasos unidos covalente, lo que les permite insertarse en la zona hidrófoba de la membrana. (Modificado de Alberts et al., 2002)
Las proteínas asociadas a las membranas plasmáticas cuyas cadenas de aminoácidos no cruzan completamente la membrana plasmática se denominan periféricas. Hay varias maneras de asociación: a) inserciones que sólo ocupan la monocapa externa o la interna, con lo que quedan ancladas a las membranas. Este tipo de asociación no es frecuente; b) por interacciones eléctricas con proteínas o lípidos gracias a la atracción entre cargas positivas y negativas (fuerzas de van der Waals). Estas asociaciones son más lábiles y las proteínas pueden abandonar la membrana con cierta facilidad. En realidad son proteínas hidrosolubles; c) por unión covalente de la proteína con lípidos de membrana o con un ácido graso, lo cuál hace que aunque la proteína no tenga aminoácidos hidrófobos se encuentre anclada a la membrana gracias a los ácidos grasos que se encuentran insertados en la zona hidrófoba de la membrana. En este apartado podemos también incluir a las proteínas que están unidas covalentemente a los glúcidos de los lípidos.



              iv.Asimetría del  plasmalema                                
      

En las membranas de los orgánulos y en la plasmática existe una hemicapa  orientada hacia el citosol y otra orientada hacia el interior del orgánulo o al exterior celular, respectivamente. La composición en lípidos, glúcidos y proteínas periféricas es distinta en ambas hemicapas. En la membrana plasmática, la hemicapa orientada hacia el exterior contiene una mayoría de los lípidos que poseen colina, como la fosfatidicolina y la esfingomielina, mientras que la fosfatidiletanolamina, fosfatidilinositol y la fosfatidilserina se localizan en la hemicapa interna. Esto es interesante porque crean una distribución diferente de cargas entre ambas superficies de la membrana, que contribuye al potencial de membrana. Además, facilita la asociación específica de proteínas que necesitan un ambiente eléctrico determinado y que es aportado por la naturaleza química de las cabezas de los lípidos. Otro ejemplo es el lípido fosfatidil inositol, localizado en la hemicapa interna, que al ser modificado por ciertas fosfolipasas se divide en dos moléculas, una de las cuales viaja por el citosol y actúa como segundo mensajero. También durante la apoptosis, muerte celular programada, los lípidos de la hemicapa interna de la membrana citoplasmática son expuestos en la hemicapa externa, son reconocidos entonces por los macrófagos y la célula es fagocitada. Los glúcidos se localizan preferentemente en la hemicapa externa de la membrana plasmática, como veremos más adelante. La asimetría en la distribución de moléculas entre ambas hemicapas se produce también en diferentes orgánulos de la célula.
¿Dónde se produce la asimetría? La asimetría que aportan las proteínas se produce durante su síntesis en el retículo endoplasmático, aunque las proteínas asociadas a la cara citosólica se sintetizan en el citosol. La distribución asimétrica de los lípidos se produce principalmente en el aparato de Golgi y en otros compartimentos celulares, excepto el retículo endoplasmático, donde hay una distribución simétrica en las dos hemicapas. Esta asimetría se mantiene por la infrecuencia de los saltos de los lípidos entre hemicapas (movimiento "flip-flop"). La distribución de glúcidos, localizados sobre todo en la hemicapa externa de la membrana plasmática, se produce en el retículo endoplasmático y en el aparato de Golgi.
Rotura y fusión
Una de las propiedades más útiles de las membranas para la célula es la capacidad de ser rotas y volver a ser fusionadas. Ello permite que los compartimentos intracelulares puedan ser tremendamente plásticos, es decir, dividirse, fusionarse, pueden formar vesículas membranosas en un compartimento que viajan a otro con el que se fusionan, etcétera. Ésta es la base del transporte de moléculas entre compartimentos membranosos que veremos en apartados posterirores, denominado transporte vesicular. Esta característica de las membranas es también necesaria durante la etapa de la mitosis denominada citocinesis donde la membrana citoplasmática debe crecer en superficie, romperse y luego fusionarse para formar dos células hijas independientes. Realmente estos procesos de rotura y de fusión de membranas están gobernados por las proteínas, entre las que se destacan las SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor), puesto que la bicapa lipídica es muy estable.
Numerosos procesos naturales o la manipulación experimental de las células provocan la rotura de las membranas celulares. Por ejemplo, en los experimentos de clonación se necesita meter una pipeta, la captación de vectores o ADN supone a veces la poración de las membranas celulares, la propia manipulación supone roturas de membrana. Pero también en los tejidos vivos sometidos a tensiones hay un proceso de rotura de la membrana plasmática, como ocurre frecuentemente en las células musculares. La célula cuenta con mecanismos para evitar que su contenido citoplasmático salga al exterior y se rompan las diferencias entre el medio interno y externo. Esto es letal para la célula si se prolonga más de unos cuantos segundos.
Reparación membranas Cuando las roturas de la membrana son pequeñas, menores a unas 0.2 micras, las propiedades moleculares de los lípidos son suficientes para cerrar el hueco (Modificado de McNeil, 2003)
Hay dos maneras de sellar la membrana según el tipo de daño que se produzca. Cuando los daños son pequeños (normalmente menores a 0.2 µm) las propiedades de los lípidos de la membrana son suficientes para repararlos. Ello es debido a que los lípidos en el borde de la membrana adoptan una disposición inestable que fuerza a dichos bordes a encontrarse y a sellarse. La rapidez con que este proceso ocurre depende de la tensión de la membrana, que depende a su vez de los puntos de anclaje, bien al citoesqueleto o a la matriz extracelular. Cuando se produce una rotura entra calcio a favor de gradiente de concentración que hace que el citoesqueleto se desorganice parcialmente en la zona dañada y su efecto sobre la membrana disminuye, se rebaja así la tensión y aumenta la velocidad de resellado. Cuando los daños son grandes (más de 0.2-0.5 µm) los bordes rotos libres de la membrana están demasiado lejos para se que puedan autosellar y se pone en funcionamiento un mecanismo de exocitosis masiva, es decir, fusión de vesículas con la membrana plasmática, aunque en este caso también incluye grandes compartimentos membranosos. El proceso sería el siguiente: la amplia rotura produce una gran entrada de calcio, éste provoca la fusión de compartimentos membranosos próximos al lugar de la rotura creándose un macrocompartimento, el cual terminaría por fusionarse con los bordes de la membrana plasmática. Entre los compartimentos implicados en la fusión estarían los endosomas, los lisosomas, vesículas próximas y otros compartimentos especializados de distintos tipos celulares. Los lisosomas parecen especialmente importantes en este proceso.
Reparación membranas Cuando las roturas de la membrana son grandes, más de 0.2-0.5 micras, ocurre una gran entrada de calcio que dispara procesos similares a los de la exocitosis. Los orgánulos próximos son conducidos a la zona del daño, se fusionan entre sí y terminan por fusionarse con la membrana plasmática. (Modificado de McNeil, 2003)
Las células y los tejidos tienen mecanismos para adaptarse a las tensiones mecánicas repetitivas: la matriz extracelular se especializa, aumentan los complejos de unión, aumentan los filamentos intermedios del citoesqueleto, aumenta las dimensiones y el número de compartimentos membranosos celulares, etcétera. En los cultivos celulares se pueden estudiar las respuestas de las células a las tensiones mecánicas. Se ha comprobado que ante un estiramiento del 10-15% las células aumentan su superficie de membrana por fusión de compartimentos internos. Esto ocurre normalmente en las células de la vejiga urinaria,que sufren grandes variaciones de tensión. Cuando las células en cultivo son estiradas dos veces, en la segunda se produce una reparación más rápida que en la primera. Se observa que la cantidad de vesículas producidas por el aparato de Golgi es mayor de lo normal, por lo que la célula puede responder con mayor eficacia. La sujeción de la células a la matriz extracelular también se ve reforzada. Así, las proteínas del citoesqueleto y de la matriz extracelular se incrementan en número para adaptarse a las tensiones mecánicas repetitivas.







Referencias:

McNeil PL, Steinhardt RA. Plasma membrane disruption: repair, prevention, adaptation. 2003. Annual review in cell and development biology. 19:697-731.



                  v. Movilidad de los componentes de membrana
La característica principal de los lípidos de membrana es que tienen una alta fluidez que les
 permite mucho movimiento, contrariamente a lo que se pensaba hasta 1972, momento en el cual
 Jonathan Singer y Garth  Nicolson propusieron en modelo del mosaico fluido.
Los lípidos tienen varias formas de movimiento: pueden moverse lateralmente, en el plano de la
 membrana, pueden rotar sobre sí, pueden tener movimientos de flexión en los cuales son las
 cadenas que se mueven, y  finalmente pueden padecer procesos de flip-flop.

 Tipos de movimiento

- Difusión lateral: Es el movimiento más común en los lípidos de membrana y es de una alta velocidad. En  efecto, su coeficiente de difusión es de 10-8 cm2/seg. Es decir que se difunde en toda la longitud de la  membrana en unos pocos segundos.
- Rotación y flexión: Son fenómenos observados pero de los cuales se sabe poco. Se podría pensar que es  para facilitar en algunos casos la entrada de las moléculas en la célula y aumentar así la permeabilidad.
- Flip-Flop: Permite el traspaso de los lípidos de una capa a la otra de la bicapa. Es un proceso muy lento y  que consume mucha energía, ya que las cabezas polares de los fosfoglicéridos deben atravesar un medio  apolar. Aún así, es imprescindible, para que se regenere la monocapa no citosólica. Por ello, los lípidos  cuentan con la ayuda de unas enzimas que facilitan el movimiento: las flipasas o  translocadoras de  fosfolípidos. Estas enzimas se encuentran en el Retículo Endoplasmático, dónde se sintetizan los lípidos, y en  la membrana plasmática. El movimiento de flip-flop es raro y ocurre sólo una vez por día.

 

Regulación de la fluidez

La fluidez de las bicapas lipídicas está controlada por varios factores. Esta regulación debe ser
 precisa para  que no se de te ngan los procesos de transporte o enzimáticos, ya que se pueden
 detener si la viscosidad  aumenta o baja más allá de un nivel límite. Por ello algunos mecanismos
 permiten controlar la fluidez. La  composición de la membrana y la temperatura son los elementos
 que más interfieren en la viscosidad de la  membrana.
Referencias:
http://es.wikipedia.org/wiki/L%C3%ADpido_de_membrana.Esta página fue modificada por última vez el 25sep 2010, a las 21:46.

The membrane